
N93-12387

v

= .

z

w

¶

L :

=

%,,"

Selecting Reusable Components Using Algebraic Specifications"

David Eichmann

DepL of Statistics and Computer Science
West Virginia University
Morgantown, WV 26506

emaJ]: eiclunann@a.cs.wvu.wvneLedu

1. Introduction

A significant hurdle confronts the software reuser attempting to select candidate components from a

software repository - discriminating between those components without resorting to inspection of the ".zm-

plementation(s). We outline a mixed classification/axiomatic approach to this problem based upon our lat-

tice-bas_ faceted classification technique [6] and Guuag and Horning's algelxaic specification techniques

[8]. This approach selects candidates by natural langnage-dedved classification, by their interfaces, using

signatures, and by their behavior, using axioms.

We briefly outline our problem domain and related work in sections 2 and 3. Secdon 4 describes lat-

tic.e--based faceted classification; we refer the reader to surveys of the extensive fitexature for a]gebraic

specification techniques [1,3,15]. Behavioral support for reuse queries appears in section 5, followed by

our conclusions.

2. The Problem

A matme software repository can contain thousands of components,each with its own specification,

interface, and typically, its own vocabu/ary. Clasdfcation schemes based upon tez_finology used in corn-

portents and/or their corresponding documentation can obviously fall prey to the ambiguity inherent in

natural language. Less obvious is the ambiguity inhezent in formal specifications. Consider the signatures

presented in figures 1 and 2 for a stack of integers and a queue of integers, respectively. These signatures

are isomorphic up to renaming, and thus exemplify the vocabu/ary problem. Software reusers implicitly

Create: --> Stack

Push: Stack x Integer -e Stack

Pop: Stack -_ Stack

Top: Stack --> Integer

Empty: Stack --> Boolean

Figure 1 - Signature for the Stack Specification

Create: --> Queue

Enqueue: Queue x Integer -9 Queue

Dequeue: Queue -_ Queue

Front: Queue -) Integer

Empty: Queue -) Boolean

Figure 2 - Signature for the Queue Specification

To appear in AMAST'9] - Proc. of the Second lnt. Conf. Algebraic Methodology and Software Technology,

Workshops in Computing Series, Springer-Verlag, London, UK, due out 1992.

w

ill

Create: -9 TOI

Insert: TOI × Integer
Remove: TOI -9 TOI

Current: TOI -9 Integer
Empty: TOI -9 Boolean

-9 TOI

Figure 3 - Signature for the Ambiguous Specification

associate distinct semantics with patfi__ for e_pie, pop and enqueue. Thus. by the choice of

names, a component developer can mislead ,resets as to the semantics of components or provide no means

of discriminating between components. Remaining push ¢nqueae. pop dcqueue, and top front in a stack

component is an example of the former. Renaming stack and queue to TOI, push and cnqueue toinsert,pop

and dequeue to remove, and top and front to current in a stack component and a queue component, respec-

tively, is an example of the latter. The signature for the resulting ambiguous specification appears in figure

3.

3. Related Work " :

Recent proposals for repository interfaces [6,5,9,11] failed to adequately address the vocabulary prob-

lem, since they concentrated on vocabulary-oriented classification techniques, e.g., from library science.

Priew-Diaz and Freeman used the notion of literary warrant to develop the faceted classifw.ation approach

[11]. They clustered descriptive terms drawn fi_m sample components in the repository into a number of

facets comprising a single mple schema. The faceted classifrauion appcoach suffers from the vocabulary

problem due to the probable ambiguity in the vocabulary used b_th in the components and the correspond-

ing documentation.For example,considerthecasewhere various components use termssuch asdestroy,

delete, remove, discard, e¢. - all pairwise synonyms, but with quite distinct semantics.

Eichmann and Atkinsfurtherstructuredthefacetsand facettuplesintoa lattice,alleviatingtherequire-

ment that all components contain a value for all facets [6]. The classifwmti'on of a component contained a

set of values drawn from a given facet, avoiding the need to compute closeness metrics.

Neithex of the above approaches completely overcomes the true nature of the vocabulary problem, the

issue of behavior. Algebraic six_ifwattion techniques (e.g., [8]) partially (andunintentionally) overcome the

vocabulary problem through inclusion of behavioral axioms into the _w, ation. Figures 4 and 5 provide

characterizations for figures I and 2, respectively (ignoring error semantics for the sake of simplicity). The

main objection to algebraic specifications is in the need to comprehend the specifications retrieved from the

Pop (Push (S, I)) ffi S

Top (Push (S, I)) - I

Empty(S) - if (S -- Create) then true else false

Figure 4 - Axioms for the Stack Specification

Dequeue(Enqueue(Q,I)) - if (Q --- Create) then Create

else Enqueue (Dequeue (Q) ,I)

Front (Enqueue (Q, I)) - if (Q -- Create) then I
else Front(Q)

Empty(Q) ffiif (Q -- Create) then true else false

Figure 5 - Axioms for the Queue Specification

v

1l

[]

Ulp

w

V

I.

m

!

w

J

m)

!

-2-

E
l

r_

ira.

v

w

w

repository. The traditional examples in the literature rarely exceed the complexity exhibited in figures I

and 2.

4. Faceted Classification

4.1. Sinqle Tuole Classification

The face.¢_ classification methodology, as studied by Prieto-D/az, begins by using domain analysis "to

derive faceted classification schemes of domain specific objects" [I 1,12]. This process relies on a library

notion known as Uterary warrant, involving the collection of a representative sample of tides which are to

be classified and extracting descriptive lerras to serve as a grouping mechanism for the tides. From this

process, the classifier not only derives terms for grouping but also identifies a vocabulary that serves as

values Within the groups.

From the softwm'e perspective, the groupings or facem become a taxonomy for the reusable compo-

nents. Using literary warrant. Prieto--Diaz identified six facets that can be used as a taxonomy: Function,

Object, Medium, System Type, Functional Area and Setting. Every software component is classified by

assigning a value for each facet for that component. For example, a software component in a relational data-

base management system that parses expressions might be classifw.d with the .,pie

(parse, expression, stack, inteq_reter, DBMS,).

Thus, the Function facet value for this component is "parse", the Object fleet value is "expression", etc.

Note that no value has been assigned for the Setting facet as this software comlxment does not seem to have

anappropriate value fortheSettingfacet.

The sofnua_ reusm"locatessoftwarecomponenls ina face_d reusesysl_m by specifyingfacetvalues

that are descriptive of the software desixexL For example, using Pdeto-Diaz's facets, suppose that we wish

to fmd a software component to format text. We might query the system by constructing the mple

(format, text, file, file handler, word processor, ").

Note that the asterisk for the value for the Setting facet acts as a wild card in the query which indicates that

there is no constraint on that facet. If the query results in one or more "hits", thee the reuser chooses from

the hits the particular software component that best fits the desired need. Problems arise if no hits are ob-

tained or if the software that is ident]f_.A is not appropriate to the needs of the reuser. One solution is to

weaken the query by relaxing one or more constraints by replacing a facet value with a wild card. For exam-

ple, ff the Functional Area facet has the least significance to the required need, the teaser could again pose

the query with the "ple

(format, text, file, file handler, ", ").

This process of weakening the query continues until a suitable component is retrieved.

An alternative method for continuing the search after an initial q_ry involves conceptual closeness,

where pairs of facet values for the same facet have numeric values associated with them that in a sense

measures their "degree of sameness." For example, the two facet values "delete" and "remove" would be

very closeinmeaning and hence wcoJd have a meu_ valuecloseto0 indicatingtheirsemantic closeness.

However, thetwo values"add" and "format"forFunctionhave littleincommon and hence would havea

closenessvaluenearertoI.Inthismeehod,thesystemassumes theresponsiI_ilityforcontinuedsearchesby

modifying thequeryby replacingfacetvalueswithvaluesthatare"close"inmeaning asdeterminedby the

-3-

u

closeness metric. For example, if the facet value "editor" is closer to "word processor" .in terms of the met-

ricthananyothervalueinanyfacet,thenthesystemposesthequerywiththemodifiedtuple

(format, text, file, file handler, editor, ")
and continues in this manner until a hit is obtained.

Although this appears to be a reasonable solution to the problem of continued searches, the difficulty

lies in the need to assign meaningful clo_ values to pairs of facet values. With a large cogection of

values, this is a daunting task.

4.2. Lattice-Based Classification

Lattlce-bas_ faceted classification extends simple faceted classifr..afion by organizing an arbitrary

numberoffacetsandn-tuplesintoalattice[5].As showninfigure6,therearefoursublatticescomprising

the complete type lattice, corresponding to the types generated by facet sets, functions, ADTs, and topics.

In addition,the univc=_altype, T, andthe void type, .L, ensurethat a leastupperboundanda greatestlower
bound,_tivdy, existforanytwo typesin_la_,

Faces characterizes the notion of the empty facet type; it contains no values, but is still a facet. Like-

wise, Facet characterizes the notion of the set of aft pos_b_ facet values. The dotted fine between them

incfica_s that a number of types appear here in the Lat_ce. In particular, there _ a vertex for each member

of the power set formed from d_eelemenL$ comprising _e fa_. Figure 7 shows the lauJce for the exam-

ples in section 4.1 expanded to show _e subLqU_esfor each of the facets.

Function types are bounded above by .L _ T, the functkm _pe w_h a void domain and mfiversal

range, and are bounded below by T -, 1, the function type with a universal domain and void range.

ADT types are bounded above by _._, _e abstract type denoting a hidden type, _ wi_ no _formafion

or operations avai6ble, and are_ bek)w by ADT, the _e denoting Allpossible types with all possi-
ble operations.

The tuple sublattice has a sm_ctm-e similar to that of the facets. At the top is the empty tuple type, {},

characterizing a type with n0 components. At the bottom is Tuple,_tupie _ with all possible cOmpo-

nents. We restrict component types to facet, function, or ADT. Note that restricting queries to only Tuple

(with all and only the Fac._sappearing_ _ents) and allowing * as a de_uit t_acetvalue reduces this
approach to the of Prieto-Diaz.

T

Face_ j. -_ T 3e.e {}
! ! ! I

I I | !

I I ! I

Facet T--* .L ADT topic

J.

Figure 6.

U

gl

n

D

pj,

I

i*

r

m
w

m

a

elW

i

w

m

I

m

w

m

. =

W o

V

L

i

J

=--

=

F

L=

m

. Faceto

Function0 Object0 Medium0 SystemTypeo FunctionalAreao Setting0
!

!

I

!

!

!

!

!

!

Function Object Medium SystemType FunctionalArea Setting

Facet

Figure 7. The Sublattice of Facet Sets

4.2.1. Facets vs. Facet Value Sets

Traditional retrieval of individual facet values relics upon maximal conjunction of boolean terms for

retrieval of matches on a/l facets and maximal disjunction of boolean tea-msfor matches on any facet of an

expression. In orde_ to fit the notion of faeet into the, typelattiee, we look at sets of facets. A set of facets

corresponds to a conjunction on all of the facets comprising the set. Each set occupies a unique position in

the type lattice. We handle disjunction by allowing a given component to occupy multiple lattice positions.

Matching occurson any ofthepositions,providingthesame semanticsasdisjunction.

Facetvaluesareequivalenttoenumerationvalues.We attachno particularconnotationwithinthetype

systemtoa particularfacetvalue.Valuesarebound tosome semanticconceptintheproblem domain.

The subset relation is our partial order. The least value of this portion of the lattice is the set of all facet

values from all facets in the problem domain, denoted by the distinguished name Facet. The greatest value

of this portion of the lattice is the empty set, denoted by the distinguished name F_r_o. The union operator

generates the greatest lower bound. The intersection operator generates the least upp_ bound.

4.2.2. Domain Interval Subtyping

We adapted the notion of a domain interval [4] to formalize our notion of facet value sets [6,5]. In [4]

a subtype was smaller than its supertype; here the reverse is true, a subtype is a larger collection of values

than its supertype.

A domain interval is a type qualification that explicitly denotes the valid subrange(s) for a base type.

Assume that t is a base type ordered by < (the ordering may be arbitrary). A domain that is (inclusively)

delimited by two values, a and b, is denoted t_,...b_. Intervals made up of more than a single continuous value

range are denoted by a set of ranges; for example, t_.._,...,t,) denotes the interval that includes the subinter-

val a through b inclusive, the subinterval c through d inclusive, and the singlelbn value e. The singleton

range e is equivalent to e...e. When we use such notation we intend that a < b and c < d, but not necessarily

W

that b _ c or d -<e. An empty pair of brackets, k>,denotes an empty interval, i.e., one which contains no

elements. In our particular application, the base types are finite sets of enumeration (facet) values.

Premises concerning membership of interval boundary values (e.g., m and n in (1) and (2)) are assumed

to be part of the assumptions, and typically are not explicitly mentioned. Rule (1) provides for subtyping a

subrange of some type t; (2) does the same for two subranges of some type t. Rule (3) extends subtyping to

A_met
AI-n¢ t
A _m<n (1)

A Ft __t+m.._

AI-met
A|-m'¢ t
AJ-n_t

A F n' E t (2)
A F m'.,;m <n<n"

A I-t_-..a_ -_tO=...=)

domain intervals, where each subinterval in the subtype is a subtype of some interval in the supertype.

A I- t(ml...al)! t(ml'..aai")

A t- t6._.._l >+t¢=¢.._0 (3)

A k toal...e!.... =a.._)_ t0ag...eg...,_:.=t_

Not shown are rules used to combine ranges in domain intervals; two ranges in an interval that share a

common endpoint combine into n single range, and overlapping ranges merge into-asi-ngle/_ge- _t_

the minimum of the two lower bounds as the new lower bound and the maximum of the two upper bounds

as the new upper bound.

4.2,3. Functi0n Typing

Function types arc useful both for characterizing programs and for characterizing the operations of

ADTs. Inference rule (4) characterizes the usual notion of lambda abstraction, where x is the parameter, t"

the parameter's type, e is the body of the function, and t the type of the function's result.

A,x : t' I-e:t

A __.(x : t') e

One function type, s --* t, is a subtype of another, s" ---*

main of the function supertype (i.e., s' -_s), and produces a

t"), as shown in inference rule (5).

: (t" _t) (4)

t',if fu tio. ep= theent ao-
range containedin the supertype range (i.e., t-_

A F S" __S

A Ft ._t' (5)
A _ s--, t __st --_ t"

Function ubtyp g ali e 'ange= buta belps.Assume f =a nc-
tion type (1..,;) -=_true and g is a function type (2..3) -, (true..false). Function type fis a subtype ofg. Any

instanceof f can alwaysreplacean instanceof g in an expressionwithoui effecting _e type-safety of the

e×pres._on. The instance=of f hand|es _t l_t the values the supertype function does, and produces no more

values-than does the super_ function.

-6-

==m

W

W

=

i

m

W

J

m
m

W

mw

w

i

9 .

r
w

u

m

4.2.4. ADT Typing

Inference rules (6) and (7) define type inference for existential types [1]. An existential type consists

of a type variable a, representing the type, packaged with some number (j_ ... j_) of instances of the type

and/or operations over the type.

A _el: s_l_,

A I-ca: s_l_ (6)
A I- pack (a = t in (jl : st j, : se))

(el e_) : 3a.O_ : st..... j, : s_)

A Fe: 3b.(jl : sl j°: s_)

A.(x : (ji : sl j. : sa))Io, _ e' : t (7)

A _ open e as x[a]in e" : t

A given expression e_is of type s_when t is substituted for a in s_,and serves as the implementation of

the value or operation labeled _ in the abstract type. This substitution results in a concrete type (i.e., one

with no type variables in it) for the expression. The substitution type t serves as the representation of the

abstract type, denoted externally by the existential variable a. The actual representation and the implemen-

tations of the operations are not visible externally.

The pack operation constrtwts an instance of an abstract type, and encapsulates its representation. The

open operation performs the converse, binding an abstract type variable to a concrete type, and evaluating

some expression in the context of the (now concrete) abstract type.

Subtyping of ADTs derives from subtyping of the type parameters for the abstract type. Inference rule

(8) characterizes subtyping of two instances of abstract types.

A.(tl -_t2) I- (t -_t')

A I-(3(tl -_t2).t) -_(3(tt __t2).t') (8)

Note that in addition to providing subtyping of two ADTs, rule (8) also supports subtyping of two in-

stancesof the sameADT.

For an example of the former, 31" 3(T -_T').T" denotes an existential type T" generated by a type

parameter T, which must be a subtype of the existential type T'. Since ins_ of abslract types are cross

products of instances and operations, T would be a subtype of T" through additional operations. An exam-

ple of this appeared in [13], showing stacks and dequeues as subtypes of queues.

For an example of the latter, stack of integero__mis a subtype of stack of integer.

4.2.5. Tuple Typing

We view a tuple r to be of type record, {U..... t,}, where t_is some facet, function, or ADT type. While

components are not labeled, they may appear in any order since we assume that facet names are unique.

Two record types are assumed to be equivalent if they only differ in the order of their resistive compo-

nents.

Inference rule (9) characterizes subtyping for mples. Informally, one tul_le type is a subtype of another

if it has all of the components of the other (and possible more), and for those common components, the type

tr-=_

W

tively.

of a given component in the tuple subtype must be a subtype of that component's type in the tuple super-
type.

A_l<m<n

A I-t'! -<tl

: (9)
A _ i'm =_tm

A F {t'! t'= t,} _<{tt tin}

Inference rule (10) supports definition of tuple constants and extraction of a component value, respec-
=

A Fei; tl

A _ e_ = tn (10)
A.(r = {el e.}) _ r : {tl..... t.}

4.2.6 Repository Structure

The repository itself consists of the actual components (we aren't concerned at this point whether they

are stored in source form, or in executable form (as considered by Weide, et. al. [14])), axiomatic specifica-

tions for each of tt_ _mponents, and a vocabulary-based class_cati0n structure.

The components are.................partidoned by structural similarity (package, function, etc.). Each partition is as-

sociated with a set of facets which charac_ and classify all members of the partition. The particular

facets and the number of facets associated with a partition varies as needed to adequately characterize it A

given facet may be unique to a partition, or it may be shared by many partitions. The Function facet from

section4_ a _ example Of a _ _y _be _ by a majority of paru_laons_mthe _sitory.

Each partition instance (i.e., each componen0 has one or more lattice vertices that correspond to the

sets of section 4.2. i. There is always the _ lattice vertex corresponding to the mple of facet value

sets characterizing this component as a member of the partition. Additionally, there may be zero or more

secondary lattice vertices corresponding to alternative characterizations of the component or characteriza-

Lions of subcomponents contained within this componenL

5. Behavior Specifications in Reuse- _,_ _ : ::::_-

We base repository retrieval interface upon both the vocabulary used in components and the observable

behavior of components, that is, the axioms that formally characterize the _antie$ of components. The

ability for a =user to _y _ify compo_ni behavior is a key dement of theinterface designl

Retrieval of components under this system pmc.ee_ in two phases. A reuser initially specifies ay0--

eabulary/si_query, _wing the field of candidates to those that are isomorphic to the query signa-

ture (ifone is specified). The axioms characterizing each of the candidate components in turn are then used

astheoriessupportingattempted proofsof the pro_s_fion(s)the reuserposesinthe secondp_ of=the:_

query(usinganexistingtheoremprover,e.g.,RRL [I0]).Su_ful proofofallofthepropositionsposed

by theuserindicatesthatthecomponentofinterestprovidesatleastthesexnanticssoughtafter.

Thisbyno-me,ans__i)liesthatthecomponentsthusretrievedhavethesamesemantics.Forexample,

thequeryproposition

-8-

g

l

ilr

IIF

I

J

m

m

mp

z

V

lib

-im

I

I

"IW

l

IB'

!

i
B

ml

-.=..-

w

m

:- =

qs==

_==¢-

C-

m

w

Create: -_ Stack

Push: Stack × Integer -_ Stack

Pop: Stack -_ Stack

Top: • Stack -_ Integer

Empty: Stack -_ Boolean

Depth: Stack -_ Integer

Figure 8 - Signature for the Stack Specification

Remove (Insert (Create, x)) - Create

can be proven both by the stack axioms (with Remove bound to Pop and Insext bound to Push) and by the

queue axioms (with Remove bound to Dequeue and Insert bound to Enqueue). Howevex, the query proposi-

tion

Remove (Insert (Insert (Create, x), y)) = Insert (Create, x)

can be proven only by the stack axioms; having failed to prove the query proposition, the queue specifica-

tion would be removed as a candidate. Our assumption in this approach is that the rensex will pose proposi-

tions that best characterize the behavior of interest (i.e., the second example proposition better characterizes

a stack than does the first example proposition), thereby providing better discrimination between signature--

isomorphic components.

Propositions posed by reusers need to be tested against a single specification's axiom set multiple

times in cases where an operation from the reusex's query signature cannot be resolved to a single operation

in a candidate component's signature. This usually results from an insufficient vocabulary framework.

Consider the signature of figure 8, a slightly extended version of figure 1. In the absence of any classifica-

tion information specif'r..ally ¢otw.etning the Top and Depth operations for query propositions such as

Query (Insert (Insert (Create, x), y)) - y

Ouery(Insert (In_ert (Create,x) ,y)) - 2

(assuming that these two propositions are posed in separate qtw.ries) the system must attempt a proof of the

proposition using both a binding of Query to Top, Insert to Push, and Create to Create, and a binding of

Query to Depth, Insert to Push, and Create to Create. The first proposition is successfully proved using the

f'u'stbinding and the second proposition by the second binding.

We associate an operation partition with each distinct operator type signaRu_, e.g., "--, TOI " or

"TOI × Integer -_ TOI". in a specification. A given operation is a member of an operation partition

if it has the type associated with that partition. The numbe=r of ahetnafive bindings, AB, for a given query/

candidate _g derives f_ the _ties Of ear-of (_0i_. the set of distinct operation partitions in the

candidate signature, and QOP, the set of distinct operation partitions in the query signature.

I bPOOpl_b I if b,=aexists (11)

AB
• GI_cop 1 otherwise

Two operations, a and b, drawn from the candidate signature and the query signature, respectively, are

partition equivalent, written a - b, if the types associated with the partitions dj.'ffer only in TOI, the type of

interest. In the absence of any other information, any member of a given query operation partition must be

bound to all members of the corresponding candidate operation partition for proving user propositions, par-

iI

I) -_ TOI

2) TOI X Integer --)

3) TOI -_ TOI

4) TOI -9 Integer

"5) TOI --) Boolean

TOI

Figure 9 - Operation Partitions

ticularly when a candidate component's author chose misleading oceration names. Figure 9 shows the five

operation partitions for figures 1-3 and figure 8.

Singleton operation partitions arc unambiguous, since there can be Imi a single binding possible be-

tween the query operation and the candidate operation. Hence, there is only a single binding possible be-

tween each of specifications in figures 1-3, since each of the partitions contains a single operation.

Operation partitions containing more than one operation are ambiguous, and using (11), contribute a

proportional increase in the number of alternative bindings. Figure 8 has two operations in operator paxti-

tion 4),Top-anti _pth; hence, the two al-temafivebind_gs _ussed above.

6. C0nclUslons _ =___........ _ = :

Our approach merges traditional vocabulary and m/ntact_basedretrieval mechanisms with the formal

semantics of algelraic specification. Neither retrieval mechanism _ isolation is sufficient to completely

address the entire problem. Perhaps the most surprising result of rids work was our realization concerning

the fuzziness of even formal specifications, due to the ambiguity of the terms used in those specifw.atious.

This promp-ted the initiation of work in the app_on of he,real networks to (he lxoblem [711

We are still refining the approach descnl_! in this paper. Two specific avenues of research include

refining partition equivalence and exploring fragmentary signatures. The current definition of partition

equivalence does not adequately address paramelxic polymorphism, and therefore does not handle compo-

nents that are instantiations of generic ADTs as well as it handles the generics themselves. Fragmentary

signatures, signatures that only partially characterize an ADT, hold excellent promise in supporting the use

of our retrievaI m_m in the incremental construction of softw_ _m a mix of newly-written code

and reused components.

References

[1] J.A. Bergstra, J. Heering: and P. Klint, eds, Algebraic Spec_eation, Addison-Wesley. 1989.

[2] L. Cardelfi and P. Weguer, "On Un_erslau_g Types, Data Ab_fi0n, and Po|ym0rphism,"

ACM Computing Surveys, vol. 17, no. 4, pages 471-522, December, 1985.

[3] H. Ehrig and B Mahr, Fundamentals of Algebraic Spec_cations I, Springer-Verlag, 1985.

[4] D. Eichmann, Polymorphic Extensions to the Relational Model, Ph.D. dissertation, DepL of Com-

puter Science, The University of Iowa, Iowa City, IA, August 1989.

D. Eichmann, "A Hybrid Approach to Software Repository Retrieval: Blending Facetext Classifica-

tion and Type Signatures," Ttu'rd International Conference on Software Engineering and Knowl-

edge Engineering, Skokie, IL, June 27-29 , 1991. ,=_................ _ .::

D. Eichmann and I.Atldns, "Design of a Lattice,-ga2qed Faceted Classification System," Second

International Conference on Software Engineering and Knowledge Engineering, Skokie, IL, pages

90-97, June 21-23, 1990

[5]

[6]

-10-

m

I

W

I

W

W

m

W

m
m

w

W

l

Im

TI

w

m

__m
1

[71

[8]

[9]

[I0]

[II]

[12]

[13]

[14]

[15]

D. Eichmarm and K. Srinivas, "Neural Network-Based Retrieval from Software Reuse Reposito-

fie,s," CHF 91 Workshop on Neural Network and Pattern Recognition in Human-Computer Inter-

faces, New Orleans, LA, April 28, 1991.

J. V. Guttag and J. J. Homing, "The Algebraic Specification of Abstract Data Type, s," Acta lnfor-

raatica, vol. 10, pages 27-52, 1978.

W. P. Jones, "On the Applied use of Human Memory Models: The Memory Extender Personal

Filing System," Int. Journal o/Man--Machine Studies, vol. 25, no. 2, pages 191-228, August,
1986.

D. Kapur and FL Zhang, "RRL: A RewriteRule Laboratory,"NinthInternationalConferenceon

Automated Deduction (CADE-9), Argonne,iL,May, 1988.

R. Prieto-Diaz,P.Freeman, "ClassifyingSoftwareforReusability,"IEEE Software,vol.4,no. I,

pages6-16, 1987.

R.Prieao-Diaz,"ImplementingFacctedClassificationforSoftwareReuse,"Communications of

theACM, vol.34,no.5,pages80-97.

A. Snyder,"InheritanceintheDevelopment ofEncapsulatedSoftwareComponents," Research

DirectionsinObject--OrientedProgramming,B. Shriverand P.Weguer, eds.,MIT Press,

Cambridge, MA, pages 165-188,1987.

B. Weide, W. Ogden, S. Zweben, "Reusable Software Components," Advances in Computers, M.
C. Yovits, ed., Academic Press, 1991.

M. Wirsing, "Algebraic Spccifw.ations," Handbook of Theoretical Computer Science, voL B, J.
van Leeuwen, ed., MIT Press, 1991.

v_f

=--

w

I

m

w

-11-

W

L_

IW

lw

I

i

m

IW

V

if

W

W

W

11

m

w

ql

_m

IP

m

w

m

I!

I!

W

